
Implementation of Sales Data Warehouse Using Materialized View
Thuzar Aung

University of computer studies, Yangon
 zinwar.@gmail.com
 white.girl.angel.@gmail.com

Abstract

 A distributed database is not stored in its
entirety at a single physical location. Instead, it is
spread across a network of computers that are
geographically dispersed and connected via
communications links. A distributed database
allows faster local queries and can reduce network
traffic. It allows applications to access data from
local and remote database. In distributed
environments, materialized views are used to
replicate data at distributed sites and synchronize
updates done at several sites with conflict
resolution methods. The user should not need to
know where a piece of data is stored physically. If
materialized views are used, Database
Administrator (DBA) can easily manage the
database without too much effort. Utilizing the
materialized views can not only reduce system
errors but also improve system performance. So,
this system is intended to develop Sales Data
warehouse by using updateable materialized views.
Keywords: Distributed Database, Data
warehouse, materialized views

1. Introduction

 Database today, irrespective of whether
they are data warehouses, data marts or OLTP
systems, contain a wealth of information waiting to
be discovered and understood. A data warehouse
consists of a set of materialized views defined over
a number of data source, collects copies of data
from remote, distributed, autonomous and
heterogeneous data sources into a central repository
to enable analysis and mining of the integrated
information.
 Data warehousing and online analytical
processing (OLAP) are essential elements of
decision support, which has increasingly become a
focus of the database industry. However, finding
and presenting this information in a timely fashion
can be a major issue, especially when vast amounts
of data have to be searched.

 Materialized views help solve this
problem, by providing a means to access and report
on this data very quickly. Materialized views were
first introduced in Oracle 8i and they are part of a
component known as Summary Management. The
materialized view should be thought of as a special

kind of view, which physically exists inside the
database; it can contain joins and or aggregates and
exists to improve query execution time by pre-
calculating expensive joins and aggregation
operations prior to execution.

Today, organizations using their own
summaries waste a significant amount of time
manually creating summaries, identifying which
ones to create, indexing the summaries, updating
them and advising their users on which ones to use.
Now the DBA will only have to initially create
materialized view, it can then be automatically
updated whenever changes occur to its data source.
There is also Summary Advisor component which
will recommend to the DBA which materialized
views to create, delete and retain.

2. Related Works

New and novel applications for
materialized views and view maintenance
techniques are emerging. We describe a few of the
novel applications here, along with a couple of
traditional ones. Materialized views are likely to
find applications in any problem domain that needs
quick access to derived data, or where recomputing
the view from base data may be expensive or
infeasible.

Materialized views provide a framework
within which to collect information into the
warehouse from several databases without copying
each database in the warehouse. Queries on the
warehouse can then be answered using the
materialized views without accessing the remote
databases. Provisioning, or changes, still occurs on
the remote databases, and are transmitted to the
warehouse as a set of modifications.

Incremental view maintenance techniques
can be used to maintain the materialized views in
response to these modifications. While the
materialized views are available for view
maintenance, access to the remote databases may
be restricted or expensive. Self-Maintainable views
are thus useful to maintain a data warehouse [9].
For cases where the view is not self-maintainable
and one has to go to the remote databases, besides
the cost of remote accesses, transaction
management is also needed [10].

Materialized views are used for data
integration in [11,9]. Objects that reside in multiple
databases are integrated to give a larger object if
the child objects match." Matching for relational
tuples using outer-joins and a match operator is
done in [9], while more general matching
conditions are discussed in [11]. The matching
conditions of [11] may be expensive to compute.

By materializing the composed objects, in
part or fully, the objects can be used inexpensively.
[12] presents another model of data integration.
They consider views defined using some remote
and some local relations. They materialize the view
partially, without accessing the remote relation, by
retaining a reference to the remote relation as a
constraint in the view tuples. The model needs
access to the remote databases during queries and
thus differs from a typical warehousing model.

3. Materialized Views

A view is a derived relation defined in
terms of base (stored) relations. A view thus
defines a function from a set of base tables to a
derived table; this function is typically recomputed
every time the view is referenced.
 A view can be materialized by storing the
tuples of the views in the database. Index structures
can be built on the materialized view.
Consequently, database accesses to the materialized
view can be much faster than recomputing the view.
A materialized view is thus like a cache- a copy of
data that can be accessed quickly.

A materialized view is a database object
that contains the results of a query. They are local
copies of data located remotely, or are used to
create summary tables based on aggregations of a
table's data. Materialized views, which store data
based on remote tables are also, know as snapshots.
A materialized view can query tables, views, and
other materialized views. Collectively these are
called master tables (a replication term) or detail
tables (a data warehouse term). For replication
purposes, materialized views allow you to maintain
copies of remote data on your local node. These
copies are read-only. For data warehousing
purposes, the materialized views commonly created
are aggregate views, single-table aggregate views,
and join views.

Like a cache, a materialized view provides
fast access to data; the speed difference may be
critical in applications where the query rate is high
and the views are complex so that it is not possible
to recomput the view for every query. Materialized
views are useful in new applications such as data
warehousing, replication servers, chronicle or data
recording systems, data visualization, and mobile
systems. Integrity constraint checking and query
optimization can also benefit from materialized
views.

Materialized views reduce system CPU/IO
resource requirements by pre-calculating and
storing results of intensive queries. It allow for the
automatic rewriting of intensive queries. They are
transparent to the application. They have
storage/maintenance requirements. It can
understand complex data relationships. It can be
refreshed on demand or on a schedule.

A materialized view definition can include
aggregation, such as SUM, MIN, MAX, AVG,
COUNT(*), COUNT (X), COUNT (DISTICT),
VARIANCE or STDDEV, one or more tables
joined together and a GROUP BY. It may be
indexed and partitioned and basic DDL operations
such CREATE, ALTER and DROP may be applied.

Materialized views can be refreshed either
on demand or at regular time intervals. Alternately,
materialized views in the same database as their
master tables can be refreshed whenever a
transaction commits its changes to the master tables.
 A materialized view is a replica of a target
master from a single point in time. The master can
be either a master table at a master site or a master
materialized view at a materialized view site.
Whereas in multimaster replication tables are
continuously updated by other master sites,
materialized views are updated from one or more
masters through individual batch updates, known as
a refreshes, from a single master site or master
materialized view site.

3.1. Updatable materialized view

Updatable materialized view allows users
to insert, update and delete rows of the target
master table or master materialized view by
performing these operations on the materialized
view. An updatable materialized view may also
contain a subset of the data in the target master.
 Updatable materialized views are based on
tables or other materialized views that have been
set up to support replication.
 Updatable materialized views have the
following properties. They are always based on a
single table, although multiple tables can be
referenced in a sub query. They can be
incrementally (or fast) refreshed. Oracle propagates
the changes made to an updatable table or master
materialized view. The updates to the master then
cascade to all other replication sites.

Updatable materialized views provide the
following benefits: Users allow to query and update
a local replicated data set even when disconnected
from the master site or master materialized view
site. Resources requires fewer than multi master
replication, while still supporting data updates.
Materialized views can reduce the amount of stress
placed on network resources because materialized
views can be refreshed on demand, while multi
master replication propagates changes at regular

intervals. In addition, because materialized views
can reside in a database that contains far less data,
the disk space and memory requirements for
materialized view clients can be less than the
requirements for an Oracle server containing
master sites.

 Figure 1. Updatable materialized view

4. Proposed System

This system implements the different

materialized views on Sales Data Warehouse of
Watch Gallery product on different distributed sites.
Sales Data Warehouse of Watch gallery product
contains one fact table and six dimension tables.
They are sales fact table, item dimension, type
dimension, brand dimension, location dimension,
branch dimension, and time dimension.

A materialized view is a database object
that contains the results of a query. They are local
copies of data located remotely, or are used to
create summary tables based on aggregations of a
table's data. A materialized view can query tables,
views, and other materialized views.

For replication purposes, materialized
views allow to maintain copies of remote data on
local node. These copies are read-only. If you want
to update the local copies, you have to use the
Advanced Replication feature. For data
warehousing purposes, the materialized views
commonly created are aggregate views, single-table
aggregate views, and join views.

In this system, all the information for the
Watch Gallery is stored in two distinct databases.
They are Site A database and Site B database. It
uses the Apache database server. In Site A, it
includes Mater Database and two materialized
views. In Site B, it includes Master Database and
one materialized view. If you want to show one site
data, you will check the site alive or not. This
system allows force refresh of all databases for
every 10 minutes by using updatable materialized
views. Each database of this system maintains
materialized views that contain a complete or
partial copy of target masters from the other sites.
Updatable materialized views enable users to
decrease the load on master sites because users can

make changes to the data at the materialized view
site. This system will provide user quick access
without passing through network communication
and gives low query evaluation cost.

Every master site and materialized view
site in a replication environment has a replication
catalog. A replication catalog for a site is a distinct
set of data dictionary tables and views that
maintain administrative information about
replication objects. Every server participating in a
replication environment can automate the
replication of objects using the information in its
replication catalog.

4.1 System Flow Diagram

 Figure 2. System Flow Diagram

This system includes two site, Site A and

Site B. In site A, it is two materialized view. They
are by type view and by branch view. In site B, it is
one materialized view. It is by branch view. They
are separate database. When Site A is mater site,

Start

Input
Operation

Retrieve
Or

Update

Input
Operation

Input
Operation

Retrieve Update

Retrieve
Materialized

view

Update
Master
Table

 Materiali
-zed DB

 Master
DB

Update
Materialized View

Display Results

Another
Retrieve

Yes

End

No

Propage from
Remote Site

Site B is remote site. In figure 2, it shows only one
site. The user can stay master site or remote site.
Wherever the user stay master or remote site, he
can use retrieve or update operation. If the user
stays remote site, he can use the materialized view
on remote site for retrieve purpose.

If you want to show other site data, you

check the site alive or not. If other site is alive, you
can view all materialized views. If you want to
propagate the other site, you may check propagate
site.

In our database, they are six tables. There
are one fact table and five dimension tables. Sales
table is fact table. Item dimension has 70 items,
branch dimension has six branches, Type
dimension has 3 type, brand dimension has five
brand. Brand name are Rolex, Citizen, Seiko, Rado
and Casio. Type are Man, Woman and Child.
Branch are Lanmadaw, Latha, Pabedan, Kyauk-ta-
da and Mingalataungnyunt. In this system, local
data can be kept locally, while at the same time
remote data can be accessed when necessary. This
system can ease the network load because there is
no need to be alive connection the whole time. The
users can query the desired information as a
standalone application.

Figure 3 shows the materialized view on
master site A.

 Figure 3. Materialized view on master site

In this system, the user can not compare

the using materialized view query and normal
query. But the user wants to combine query from
master site data and other remote site data, the user
easily use the materialized view data. Thus, the
network traffic cost is reduced and quick response
to user.
5. Conclusion

A materialized view is a view that actually
exists as a table. This can be more efficient than re-
computing the view’s query each time it is
accessed. It is also useful for summarizing, pre-
computing, replicating and distributing data. MVs
can be added or dropped without invalidating
coded SQL and is transparent to end-users. In this

system, materialized view is used for sales data
warehouse to provide faster access for expensive
and complex joins in the distributed database.

By using the materialized views, it
reduces network loads and users can access data
from the replication site that has the lowest cost.
Moreover, materialized view can improve the
performance of the system and users can access
easily.

Reference

[1] G Coulouris, Jean Dollimore, Tim Kindberg,
Distributed Systems concetps and design, Third edition,
ADDISON WESLEY

[2] G.Chan, Qing Li, Ling Feng. Design and selection
of materialized views in a data warehousing
environment: A case study. 1999. Http://www
.cs.cityu.edu.hk/ ~csqli/papers / DOLAP99.ps.gz.

[3] C.J. Date, An Introduction to DATABASE
SYSTEMS, Six edition, The system programming series,
ADDISON WESLEY 82458

 [4] A. Gupta, H. V. Jagadish, and I. S. Mumick. Data
integration using self-maintainable views. Technical
Memorandum 113880-941101-32, AT&T Bell
Laboratories, November 1994.

[5] K Loney, Kevin Loney Consulting, LLC, Creating
Materialized views
http://www.embaracadero.com/resources/tech_papers/ma
tview.pdf

[6] J. Lu, G. Moerkotte, J. Schu, and V. S.
Subrahmanian. E_cient maintenance of materialized
mediated views. In SIGMOD 1995

[7] Tanebaum, Andrew S, Computer Networks, Fourth
edition

[8] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J.
Widom. View maintenance in a warehousing
environment. In SIGMOD 1995, pages 316-327.

[9] G. Zhou, R. Hull, R. King, J-C. Franchitti. Using
Object Matching and Materialization to Integrate
Heterogeneous Databases. In Proc. of 3rd Intl. Conf. on
Cooperative Info. Sys., 1995.

[10] http://en.wikipedia.org/wiki/Materialized view

[11]http://download.oracle.com/doc/cd/B10500_01/serve
r.920/a96567/re.pmview.htm

[12]http://www.orcle.com/technology/products/oracle9i/
pdf/09i_mv_pdf

